Cambridge Secondary 2

Learner Guide

Cambridge IGCSE[®] Mathematics **0580**

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre

Contents

About this guide	4
Section 1: Getting started	5
Reflect on your learning	5
Methods to help you learn	7
Getting organised	10
Taking notes	11
Reflective journal	14
My plan	17
Section 2: Syllabus content – what you need to know about	18
Section 3: How you will be assessed	19
Components at a glance	19
About the components	20
Section 4: What skills will be assessed	25
Section 5: Example candidate response	27
Section 6: Revision	40
Planning your revision	40
General revision advice	43
Top tips for revision of Cambridge IGCSE Mathematics	44
Revision checklists for Cambridge IGCSE Mathematics	50
Section 7: Answers	88

About this guide

This guide introduces you to your Cambridge IGCSE[®] Mathematics (0580) course and how you will be assessed. You should use this guide alongside the support of your teacher.

By the end of this guide, you should:

- ✓ understand how to reflect on your own learning
- ✓ have an overview of the course and what you will learn about
- ✓ understand the structure of the assessment that you will be taking
- ✓ be able to plan your revision
- ✓ know how to show your skills to the best of your ability.

Section 1: Getting started

Find out how to:

- reflect on your own learning
- improve your learning
- be organised
- take notes successfully

Syllabus content

Section 2:

Find out what topics you will be learning about. Your teacher can give you more detail.

Section 3: How you will be assessed

Find out:

- how many examinations you will take
- how long each examination lasts
- what different question types the examination will contain
- how to tackle each examination

Section 5: Example candidate response

Take a look at a learner's response taken from a real examination. Find out:

- how to interpret the question
- how to avoid common mistakes
- how to improve your exam technique

Section 4: What skills will be assessed

Find out what areas of knowledge, understanding and skills you will need to demonstrate throughout the course and in your examinations.

Section 6: Revision

Discover:

- ways to help you plan your revision
- example revision planners
- some basic revision skills
- some 'top revision tips'
- revision checklist for each topic.

Section 7: Answers

Check your answers to the 'Test yourself' questions in this guide.

Section 1: Getting started

Your teacher will help you to get the best out of your course, however, you also need to take **responsibility** for your own learning.

reflection innovative responsibility engage confidence

Reflect on your learning

The methods you use to remember and understand new knowledge are how you learn. Your methods might include making lists of information, asking questions or drawing diagrams.

In order to actively **engage** in your learning, you need to think deeply about the ways you learn, and whether you can improve your learning by using different methods. This process of thinking deeply about your approach and changing it when you need to is known as **reflection**.

Reflecting on your learning in this way will help you to develop into an effective learner with **confidence** in your skills and knowledge, which in turn can lead to **innovative** thinking.

Use the *Getting started* section of this guide to help you reflect on your learning, and to find ways that you can improve your methods of learning, your organisation and your note-taking skills. Print this document to keep a record of your progress. If you prefer to work electronically, you can type in text and tick boxes directly in this PDF file, just don't forget to save it to your device each time you make changes.

Do you think about how you learn?

A, B, C and D in the list below represent different ways of reflecting on your learning. Tick the statement that best describes the way you reflect on your learning.

A: I do not think about how I learn, I just accept if I know something or not.

B: I am aware of some of the ways I learn, but I do not plan my learning.

C: I know which methods I use to learn and I actively apply them.

D: I know which methods I use to learn and I actively apply them. I also change them if I need to.

Don't forget to save this file to keep a record of your progress.

D describes a reflective process that is considered to be the most effective way to learn. Use the diagram on the next page to help you develop how you reflect on your learning.

Section 1: Getting started

Methods to help you learn

The way you remember new information is unique to you. Some common ways to learn (known as learning styles) are:

- SEEING the new information
- SPEAKING AND LISTENING (to) the new information
- READING AND WRITING the new information
- **DOING** something with the new information

You might learn using just one style, or you might learn using a combination of different styles. You and your friends will probably have different styles. There is no right way, just the way that works best for you.

Which learning style(s) do you use?

The tables on the next pages list some of the methods that work well for each learning style. Some methods work for more than one style and are repeated in the different tables.

I already know which learning style(s) work best for me: go to the appropriate table to pick some new methods to try in order to improve.

I am unsure how I learn best: try different methods from different tables to see which ones work for you.

You can try as many or as few methods as you like and they don't all need to be in the same table. You might find that different styles work better for different things you are learning. Repeat this process as many times as you need to in order to feel confident in your learning. You might even develop your own methods.

Click in the empty boxes of each table to add a tick electronically. *Don't forget to save this file so you can reflect on your methods later.*

SEEING METHODS

Methods of learning	l will try	Worked well	Did not work well
Draw information in my notebook; replace words with pictures or symbols			
Highlight important details (in my notes or handouts) by colour-coding, circling, highlighting or underlining			
Make lists			
Write detailed notes			
Watch videos on the topics I am studying			
Use mind maps, systems diagrams or other organisations of information			
Think in pictures and/or form a picture in my mind to imagine the new information			

SPEAKING AND LISTENING METHODS

Methods of learning	l will try	Worked well	Did not work well
Ask if I can record my lessons so I can play them back at my own speed			
Watch videos on the topics I am studying			
Record myself reading my notes and play them back to myself			
Repeat facts and information out loud			
Read notes out loud, trying to include rhyming or other techniques to make them dramatic and varied			
Use word association, poems, rhymes, phrases or word puzzles to help me remember facts, lists or important information			
Discuss topics with my teacher and classmates			
Ask and answer questions in the classroom			
Talk about new information			

READING AND WRITING METHODS

Methods of learning	l will try	Worked well	Did not work well
Copy down information from the board			
Write summaries of what I have learned			
Use quizzes			
Write notes			
Write key information in lists			
Read my notes and rewrite them			
Write the information from books and other resources in my own words			
Write information from my teacher in my own words			

DOING METHODS

Methods of learning	l will try	Worked well	Did not work well
Ask and answer questions in the classroom			
Start and contribute to discussions			
Use large sheets of paper and large marker pens to feel more active when writing and drawing			
Use physical objects as much as possible; for example flashcards that I can hold and move around			
Use visualisation techniques to imagine the sensations I would expect in different scenarios (what would I see, hear, smell, feel?)			
Use short definitions when writing notes			
Try to apply the information to real life			

All the methods from one learning style might work best for you, or a combination of methods from different learning styles. You can summarise which methods you plan to use in the box below.

Click in the box to type in text if you are working electronically. *Don't forget to save this file so you can reflect on your methods later.*

For example:

September: I think I learn by seeing and sometimes by actively doing. So I will try: making lists, writing notes using mind maps, highlighting important details and asking and answering questions in the classroom.

October: I didn't find making lists during lessons helpful, so I will try replacing words with pictures in my notes instead.

How organised are you?

Count the number of A statements you ticked and the number of B statements you ticked. Read the appropriate advice below. If you ticked an equal number of each, read both sets of advice.

Mostly A: You are a well-organised person who has developed strategies that work for you.

Be careful if you agreed with '*I* do my homework the day *I* get it' as this might not be the most efficient strategy; you need to prioritise homework according to deadline and how long it will take, and also make sure you allow time for fun and relaxation. See the table on the next page for more ideas of how to be organised.

Mostly B: You could use some support in being more organised in order to make life easier for yourself. Try some of the suggested methods for being organised in the table on the next page, then return to the activity above at a later date to see if you score differently.

If you do some work each day, rather than leaving it all to the last minute, you will feel more in control.

Tick the boxes in the table to reflect on how you already work and what you will try in order to improve. Aim to try at least some of these methods. Click in the boxes if working electronically.

Ways to be organised	l already do this	l will try this
Keep all my pens, paper and other equipment together in one place so I always know where everything is		
Keep my notes together and ordered by date as I go along; I will file them as soon as they are completed		
Use one place such as a planner to record each homework or assignment deadline as soon as I get it		
Include all activities in my planner so that I know what time I have available to work		
Estimate how long a given task will take me, then work backwards from the deadline and include some extra time to give me the date that I should start the work		
Be realistic about what I have time for		
Keep my planner up to date and check it every day		
Have a set time each day or week for completing homework or study so that it becomes part of my routine		
Prioritise homework or study according to which needs to be done first and not just which I like doing best		
Rank my homework as 1 (do it now), 2 (do it tomorrow), 3 (do it later in the week) and update the rank each day		
Break down any large assignments into smaller, more manageable tasks; each task will have its own deadline		
Tick off each homework or task once I have completed it		

Don't forget to save this file so you can reflect on your methods later.

Taking notes

The process of writing and reviewing your classroom or lesson notes helps you to remember information. Making notes as you go along, little and often, will make it easier when you come to revise later (see *Section 6: Revision* on page 40).

It is also really important to ask your teacher or classmates questions if you are unsure about anything or if you have missed something. Do this during the lesson or at the end of the lesson.

Tips for good note-taking

Note-taking is a skill that can be developed and improved. Look at the tips for good note-taking on page 12.

Formatting your notes

If you are unsure how best to write notes, try some of the suggested methods on page 13.

You might find that different methods work better for different types of task.

Section 1: Getting started

This might lead to a discussion on what each of you think are the important points to know.

Here are some useful ways to format your notes:

FREESTYLE METHOD WRITE ON HANDOUTS Write notes at key points directly on handouts that Just write down what you contain notes or important information. hear as the teacher says it. **CHARTING METHOD** 00001 00002 $\sim\sim\sim\sim$ Use when learning about different or contrasting factors or approaches. \sim Make a chart with a different column for each factor or approach. $\sim\sim\sim\sim$ \sim

 Write details in each column, placing the details so that you can easily compare items between columns.

FLOW METHOD

Learn while you listen. Create your own representation of the new information by:

- putting what the teacher says into your own words
- using quick drawings to break down the content into simple ideas
- using arrows to link ideas together and to add supporting points
- circling or boxing different points using different lines, shapes or coloured pens.

CORNELL METHOD

Divide your page into three sections.

- Use the 'notes' section to make notes • during the lesson.
- After the lesson, review your notes. Reduce sections of the notes into keywords and write them in the 'keywords' column.
- Write a summary to consolidate what you learned.

MIND MAP METHOD

Write the lesson topic in the centre of your page.

- Add a new branch for each new sub-topic.
- Add extra smaller and smaller branches for more detail; these show the connections between facts or ideas.
- Add notes using words and diagrams; use arrows to show links.
- Keep your notes short and put key words along branches. •
- Use coloured pens and highlighter pens to emphasise key points. (Find out more about mind maps on page 45.)

OUTLINE METHOD

Use bullet points.

- Top level bullets are the key issues in the lesson.
- Sub-level bullets are details about the top-level points.
- Sub-sub level bullets provide more separation if needed.

Top level

o Sub-level

 Sub-sub-level Top level

- Sub-level
 - Sub-sub level

This method is helpful if you already know the structure of the lesson and the structure of the learning points.

Reflective journal

Keeping a reflective journal is a useful way to record, analyse and reflect on how you learn. Here are some questions to get you thinking.

Write in the orange boxes, or create your own journal somewhere else.

Don't forget to save this file to keep a record of your progress.

I am studying IGCSE Mathematics because: (Think about what you want to achieve by taking this course.)

I like mathematics because: (What did you like about this subject when you have taken it in the past?)

This is a good subject to learn because: (*What skills will it help you develop?* Are there any uses in the real world?)

Useful skills for studying this subject are: (What skills are useful to this course? For example,
'remembering formulae', 'interpreting graphs', 'performing calculations'. Ask your teacher for help creating
this list.)

These skills are also useful for: (Think of the other subjects you are studying.)

I am good at: (Think about the skills relevant to this course.)

I need to improve: (What skills do you need to work on?)

I learn best in: (*Think about the kind of environment you work best in, for example quiet, noisy, alone, with friends.* You might like working with friends in a café, but do you learn best in this environment?)

Other thoughts:

My plan

Based on the work you have done in this section, write a summary plan for your learning. Include *what* skills you want to develop and *how* you hope to do this. You could include your thoughts on your approach to learning, your learning style and a plan of which learning and organisation strategies you will try.

Write your plan in the box below, or you could create your plan somewhere else. Make sure you date your entries and include a date for review.

Don't forget to save this file to keep a record of your progress.

For example ... October 1:

I have a type B approach to reflecting on my learning, I will try to develop a type C approach by actively applying the learning strategies I know work for me: making detailed notes; visualising the information I am being told; using rhymes; answering questions in the classroom; and copying down information from the board. I also want to try the speaking and listening technique where I discuss topics with classmates after some lessons. I need to ensure I write all homework down and split large tasks into smaller ones, and tick each one off as I complete it. I will try using more mind maps and the charting method when I'm taking notes in class. <u>Check progress on November 1</u>.

Section 2: Syllabus content – what you need to know about

This section gives you an outline of the syllabus content for this course. Only the top-level topics of the syllabus have been included here, which are the same for both the **Core** and **Extended** courses. In the 'overview' column you are given a very basic idea of what each topic covers.

Learners taking the **Extended** course need to know all of the Core content as well as some extra content. This extra content requires learners to explore topics and sub-topics of the Core syllabus in more detail, to cover some more complex techniques, and to learn new sub-topics.

Ask your teacher for more detail about each topic, including the differences between the Core and Extended courses. You can also find more detail in the Revision checklists of this guide (<u>page 50</u>).

Торіс	Overview		
Number	Number, squares and cubes, directed numbers, fractions, decimals and percentages, ordering, indices, 'four rules', estimates, bounds, ratio, proportion, rate, percentage, time, money and finance		
	Sets, exponential growth and decay (Extended only)		
Algebra and graphs	Basic algebra, algebraic manipulation, equations, sequences, proportion, graphs of functions		
	Linear programming, functions (Extended only)		
Geometry	Language, constructions, symmetry, angle properties, loci		
Mensuration	Measures, mensuration		
Co-ordinate geometry Straight-line graphs			
Trigonometry	Bearings, trigonometry		
Matrices and	Vectors, transformations		
transformations	Matrices (Extended only)		
Probability	Probability		
Statistics	Statistics		

Section 3: How you will be assessed

You will be assessed at the **end** of the course using two components:

- Paper 1 (Core) or Paper 2 (Extended)
- Paper 3 (Core) or Paper 4 (Extended).

Your teacher will advise you which papers are best for you, depending on your progress and strengths.

Components at a glance

The tables summarise the key information about each component for each syllabus. You can find details and advice on how to approach each component on the following pages.

Co	omponent	How long and how many marks	Skills assessed	Details	Percentage of the qualification
Cara	Paper 1 (Short- answer)	1 hour 56 marks	Mathematical techniques, applying mathematical techniques to solve problems	You are assessed on the Core syllabus content using short- answer questions	35%
Core	Paper 3 (Structured questions)	2 hours 104 marks	Mathematical techniques, applying mathematical techniques to solve problems	You are assessed on the Core syllabus content using structured questions	65%

Com	ponent	How long and how many marks	Skills assessed	Details	Percentage of the qualification
	Paper 2 (Short- answer)	1 hour 30 minutes 70 marks	Mathematical techniques, applying mathematical techniques to solve problems	You are assessed on the Extended syllabus content using short-answer questions	35%
Extended	Paper 4 (Structured questions)	2 hours 30 minutes 130 marks	Mathematical techniques, applying mathematical techniques to solve problems	You are assessed on the Extended syllabus content using structured questions	65%

About the components

It is important that you understand the different types of question in each component and how you should approach them.

Core: Paper 1 (Short-answer) and Paper 3 (Structured)

Paper 1 and Paper 3 mainly assess your knowledge of mathematical techniques. Some questions will assess how you apply mathematics to solve problems.

You need to answer all questions on each paper.

Question types and advice

Use the value of π from your 1. Read the questions carefully to make sure that you calculator, if it gives one. Or use understand what is being asked. **3.142**, which is given on the front page of the question paper. 2. Give your answers to the accuracy indicated in the question. If none is given, and the answer isn't exact, then: Make sure that you give your answer give your answer to three significant figures in the form asked for in the question, 12.3 🗸 12.298 × e.g. some questions ask for answers or if the answer is in degrees, then give it to to be given in terms of π . one decimal place 23.1° 🗸 23° × You can gain marks for the correct 3. Include units with your answers if they are not given on the paper. working even if you have an incorrect answer or cannot complete the 1 kg of apples costs... ...£1.20 🗸 ...1.20 X whole question. 4. Show your working. Show as much working as you can for all your questions. If you make a mistake, draw a line through the incorrect working and Wrong working answer so that it is clear you do not Wrong answer want this to be marked. Right working If you need more space, ask for Right answer another sheet of paper.

Equipment for the exam

Make sure you have:

- a blue or black pen (a spare pen is always a good idea)
- a pencil (for graphs and diagrams)
- an electronic calculator
- a protractor
- a pair of compasses
- a ruler.

Timing

- If you are stuck on a question, don't waste too much time trying to answer it go on to the next
 question and come back to the one you are stuck on at the end.
- Use any time that you have left at the end of the exam to go back and check your answers and working.

Extended: Paper 2 (Short-answer) and Paper 4 (Structured)

Paper 2 and Paper 4 assess your knowledge of mathematical techniques and how you use mathematics to solve problems.

You need to answer **all** questions on both papers.

Question types and advice

- 1. Read the questions carefully to make sure that you understand what is being asked.
- 2. Give your answers to the accuracy indicated in the question. If none is given, and the answer isn't exact, then:
 - give your answer to three significant figures
 12.3 √ 12.298 x
 - or if the answer is in degrees, then give it to one decimal place

23.1° ✓ 23° ×

- 3. Include units with your answers if they are not given on the paper.
 - 1 kg of apples costs£1.20 ✓ ...1.20 ×
- 4. Show your working. Show as much working as you can for all your questions.

Wrong working 🗲

Wrong answer

Right working

Right answer

Use the value of π from your calculator, if it gives one. Or use **3.142**, which is given on the front page of the question paper.

Make sure that you give your answer in the form asked for in the question, e.g. some questions ask for answers to be given in terms of π .

You can gain marks for the correct working even if you have an incorrect answer or cannot complete the whole question.

If you make a mistake, draw a line through the incorrect working and answer so that it is clear you do not want this to be marked.

If you need more space, ask for another sheet of paper.

Equipment for the exam

Make sure you have:

- a blue or black pen (a spare pen is always a good idea)
- a pencil (for graphs and diagrams)
- an electronic calculator
- a protractor
- a pair of compasses
- a ruler.

Timing

- If you are stuck on a question, don't waste too much time trying to answer it go on to the next
 question and come back to the one you are stuck on at the end.
- Use any time that you have left at the end of the exam to go back and check your answers and working.

Test yourself

Use the following questions to see how well you understand how you will be assessed. You can check your answers in *Section 7 Answers*. *Don't forget to save this file to keep a record*.

1. How many papers will you take for Cambridge IGCSE (0580) mathematics?

2. Which papers will a candidate taking the Core examinations take? (Tick the correct answer.)

Papers	1	and	2
Papers	1	and	3
Papers	2	and	4

3. Extended candidates have a completely different syllabus to Core candidates. (Tick the correct answer.)

True	False

4. Complete the table by entering the correct component (Paper 1–4). (You can type directly into each box if working electronically.)

Component	How long	How many marks
	2 hours	104 marks
	1 hour 30 minutes	70 marks
	2 hours 30 minutes	130 marks
	1 hour	56 marks

5. You are allowed a calculator for all Cambridge IGCSE Mathematics (0580) papers.

True

False

Section 4: What skills will be assessed

The areas of knowledge, understanding and skills that you will be assessed on are called **assessment objectives** (AOs).

The tables explain what each assessment objective means and what percentage of the whole qualification is assessed using that objective. Your teacher will be able to give you more information about how each of the assessment objectives are tested in each component.

 Candidates should be able to: organise, interpret and present information accurately in written, tabular, graphical and diagrammatic forms perform calculations by suitable methods use an electronic calculator and also perform some straightforward calculations without a calculator understand systems of measurement in everyday use and make use of them in the solution of problems estimate, approximate and work to degrees of accuracy appropriate to the context and convert between equivalent numerical forms use mathematical and other instruments to measure and to draw to an acceptable degree of accuracy interpret, transform and make 	AO1	What this means	Where
 appropriate use of mathematical statements expressed in words or symbols recognise and use spatial relationships in two and three dimensions, particularly in solving problems 	 AO1 Candidates should be able to: organise, interpret and present information accurately in written, tabular, graphical and diagrammatic forms perform calculations by suitable methods use an electronic calculator and also perform some straightforward calculations without a calculator understand systems of measurement in everyday use and make use of them in the solution of problems estimate, approximate and work to degrees of accuracy appropriate to the context and convert between equivalent numerical forms use mathematical and other instruments to measure and to draw to an acceptable degree of accuracy interpret, transform and make appropriate use of mathematical statements expressed in words or symbols recognise and use spatial relationships in two and three dimensions, particularly in solving problems 	 What this means Mathematical techniques This is all about demonstrating that you have knowledge of mathematical techniques. Use tables, graphs and diagrams degrees of accuracy, e.g. decimal places or significant figures equivalent numerical forms, e.g. between fractions, decimals and percentages, or between normal numbers and standard form mathematical instruments, e.g. a pair of compasses, a protractor and a ruler use mathematical usrituan in 	WhereCore assessmentAll two components:Paper 1 (42–48 marks)Paper 3 (78–88 marks)Percentage of IGCSE:75–85%Extended assessmentAll two components:Paper 2 (28–35 marks)Paper 4 (52–65 marks)Percentage of IGCSE:40–50%

AO2	What this means	Where
 In questions which are set in context and/or which require a sequence of steps to solve, candidates should be able to: make logical deductions from given mathematical data 	Applying mathematical techniques to solve problems This is all about how you use mathematics to solve problems.	Core assessment All two components: Paper 1 (8–14 marks) Paper 3 (16–26 marks) Percentage of IGCSE: 15–25%
 recognise patterns and structures in a variety of situations, and form generalisations respond to a problem relating to a relatively unstructured situation by translating it into an appropriately 	recognise and extend patterns take information and organise it to answer a problem	Extended assessment All two components: Paper 2 (35–42 marks) Paper 4 (65–78 marks)
 structured form analyse a problem, select a suitable strategy and apply an appropriate technique to obtain its solution apply combinations of mathematical skills and techniques in problem solving set out mathematical work, including the solution of problems, in a logical and clear form using appropriate 	 identify and use suitable approaches to problems set out work in a clear and logical way using mathematical symbols and language 	Percentage of IGCSE: 50–60%
symbols and terminology.		

Your teacher will be able to give you more information about how each of the assessment objectives is tested.

Section 5: Example candidate response

This section takes you through an example question and learner response from a Cambridge IGCSE Mathematics (0580) past paper. It will help you to see how to identify words within questions and to understand what is required in your response. Understanding the questions will help you to know what you need to do with your knowledge, for example, you might need to describe something, explain something, argue a point of view, apply the knowledge in a different way, or list what you know.

All information and advice in this section is specific to the example question and response being demonstrated. It should give you an idea of how your responses might be viewed by an examiner but it is not a list of what to do in all questions. In your own examination, you will need to pay careful attention to what each question is asking you to do.

This section is structured as follows.

A. Question

The question used in this example, question 9, is from Paper 3 (Core). It represents the type of structured question you will see in both Paper 3 (Core) **and** Paper 4 (Extended). A structured question means that it is broken into several parts. Often, later parts will depend on your answers to earlier parts.

B B C NOT TO SCALE	For Exampe's Use	Diagram 1 Diagram 2 Diagram 3 Diagram 4
		(b) The pattern of diagrams above is continued by adding more lines and dots.
		(i) On the grid, draw diagram 4. [1]
		(i) Complete the table below.
A' 'E		Diagram I 2 3 4 5
(a) In the diagram above, AB and ED are vertical. The diagram is symmetrical about a line through C parallel to AB. Angle SCD = 20 ² and SC = CD = 2 (cm)		Number of lines 4 7
(i) Calculate BD.		[2]
		 (e) How many lines will there be in (i) Diagram 9.
		Answer(c)(i)
		(L) Lagram nr
Answer(a)(i) BD		
 (ii) Complete the statement. Triangle RCD is right-angled and [1] 		Answer(c(n) [2]
Trange Deb is right and (1)		Find the value of r.
(iii) Find the size of angle ABC.		
		Answer(d) r =
		(e) Write down an expression in terms of n, for the number of dots in Diagram n.
Answer(a){iii) AngleABC		Answer(e)
©1/CLES2010 0380/62/06/70		61UCLES2010 058062/C0470

Test yourself

Test how well you understand what is required of a question in the Paper 3 and Paper 4 examinations. Answer the series of questions that relate to the paper you are taking:

- Core (Paper 3)
- Extended (Paper 4)

You can check your answers in Section 7: Answers.

Core (Paper 3)

1. How many questions do you have to answer? (Tick the correct answer.)

	11	5	2	all	half
2. How	long do you have	to answer the pa	per? (Tick the co	orrect answer.)	
40	min	50 min	1 hour 30 min	2 hour	s 2 hours 30 min

3. You are not allowed to use a calculator in Paper 3 questions. (Tick the correct answer.)

True False

4. If a question requires an answer that is not exact but does not ask for a certain degree of accuracy, what degree of accuracy should you use? (Tick the correct answer.)

One decimal place One significant figure Three decimal places Three significant figures

Extended (Paper 4)

1. How many questions do you have to answer? (Tick the correct answer.)

	11	5	2	all	half	
2.	How long do you h	have to answer the	e paper? (Tick the	correct ans	wer.)	
	40 min	50 min	1 hour 30 mi	n :	2 hours	2 hours 30 min
3.	You are not allowe	ed to use a calcula	ator in Paper 4 qu	estions. (Tio	k the correct	answer.)
	True	False				
4.	If a question requi what degree of ac	res an answer tha curacy should you	t is not exact but o use? (Tick the co	does not ask prrect answe	c for a certain er.)	degree of accuracy,
	One decin	nal place				
	One signif	icant figure				
	Three dec	imal places				
	Three sigr	nificant figures				

Now let's look more closely at the question.

Section 5: Example candidate response

B. Mark scheme

Your examination papers will be marked and the overall number of marks for each paper will be recorded. Your marks will then be converted to a grade.

Section 5: Example candidate response

The mark scheme provides the final answers for each sub-part of a question and, when appropriate, the required lines of working to reach that answer.

Answer	Mark	Notes	Sometimes the answer has
(a)(i) 3.82 Final answer	2 (1)	Full marks (2) are awarded for <u>any answer that rounds to 3.82</u> . If the candidate's answer is incorrect, 1 method mark can be awarded for sight of one of the following in their working (maximum 1 mark): $2.7^2 + 2.7^2$ OR $\sin 45 = \frac{27}{BD}$ OR $\cos 45 = \frac{27}{BD}$	as given in the mark schen times there will be a range answers. Sometimes marks can be correct lines or steps of th a calculation even if the fir
			incorrect. This is why it's s
(a)(II) Isosceles	1	This is the only acceptable answer for this part of the question.	to always show your wor
(a)(iii) 40	1	This is the only acceptable answer for this part of the question.	
Diagram 4		This is the only acceptable answer for this part of the question.	If you use a correct methor included in the mark scher method marks can still be
(b)(ii)	2	Full marks (2) are awarded if all gaps are correctly filled.	-
Diagram 3 4 5 Number 10 13 16 of lines 1 1 1	(1)	If the candidate's answer is not fully correct, 1 mark can be awarded for one of the following (maximum 1 mark):	
		Two correct values in the table, e.g. 10 and 13 correct, but a number other than 16 as the third value.	
		OR	
		Incorrect values for diagram 4 and diagram 5 but the correct difference between them. The correct difference is 3, so the values 14 and 17, or 15 and 18, for example, would be awarded 1 mark.	

to be exactly ne. Other of acceptable

awarded for e working in nal answer is so important king.

d that is not me, then awarded.

Answer	Mark	Notes]
(c)(i) 28	1	This is the only acceptable answer for this part of the question.	
(c)(ii) 3 <i>n</i> + 1	2	Full marks (2) are awarded for $3n + 1$.	
		OR	
		Any expression that would simplify to $3n + 1$, e.g. $6n + 2$.	
	(1)	If the candidate's answer is not correct, then 1 mark can be awarded for one of the following (maximum 1 mark):	
		Having '3 <i>n</i> ' in the expression but adding/subtracting incorrectly, e.g. $3n + a$, where <i>a</i> is not 1, such as $3n + 4$ or $3n - 2$.	
		OR	
		Having '+ 1' in the expression but multiplying <i>n</i> incorrectly, e.g. dn + 1, where <i>d</i> is a number other than 3, such as 5 <i>n</i> +1 or 2 <i>n</i> +1.	
(d) 25	2	Full marks (2) are awarded for the answer '25'	
		OR	
	(1)	3n + 1 = 76 3n = 75 n = 25	
		If the candidate's final answer is incorrect, then 1 method mark can be awarded for:	
		Incorrectly solving $3n + 1 = 76$	
		OR	
		Putting their incorrect expression from (c)(ii) equal to 76 and solving, e.g. 3n + 4 = 76 3n = 72 n = 24	
(e) 3 <i>n</i> + 2	1	Full marks (1) are awarded for $3n + 2$.	If the required methometical
		OR	understanding has been
		An expression that would simplify to $3n + 2$, e.g. $6n + 4$.	demonstrated, the candidate
		If the candidate's answer is incorrect but demonstrates the required mathematical understanding, award 1 mark . The understanding required for this question is that	might get awarded the marks even if their answer is wrong.
		there is one more dot compared to the lines, which is demonstrated by adding 1 to their expression in (c)(ii). For example, if their answer to (c)(ii) was $2n + 1$, then an answer here of $2n + 2$ would be awarded 1 mark.	

Now let's look at the sample candidate's response to question 9 and the examiner's comments on this response.

C. Example candidate response and examiner comments

The examiner's comments are in the orange boxes.

Section 5: Example candidate response

The candidate displays a clear understanding of the question and the areas of mathematics being tested by showing developed and accurate solutions for most of the question parts. However, they made a number of errors or missed question parts.

D. How the answer could have been improved

The candidate's answer could have been improved if the candidate made sure that they:

- gave their answers to the correct accuracy
- knew the mathematical names and properties of 2D shapes
- answered all of the parts of the question
- checked their working for errors
- checked their answers to make sure they made sense in the context of the question.

(a)(ii) Only the precise mathematical name was an acceptable answer and the candidate did not know it.

It is important to know and understand key mathematical terms because:

- for questions like this you will only get awarded the marks for the absolute correct answer
- some questions might use these terms to give you important information; if you don't know what these terms mean, then you will miss important facts from the question that you need to use to answer it accurately.

expression for the number of lines in Diagram n.

Remember to check that your answers to questions make sense, particularly in questions with numerical answers, for example the cost of an item in a sale.

37

E. Common mistakes

There were a number of common mistakes made by other candidates on this question.

• Accuracy of answers

In part (a)(i), common errors were to round to 2 significant figures, as we saw in the example, or to give the answer '3.81' due to truncating (cutting off) the answer at 2 decimal places rather than rounding.

• Misinterpreting the question

For part (a)(ii), the most common error was to repeat the information that had been given in the question or to give a property of the shape, rather than its name.

Lack of knowledge

In part (a)(iii), lots of candidates did not realise that the triangle being isosceles would lead them to the answer. Some tried to use trigonometry and others gave lengths rather than an angle.

For part (c)(ii), a number of candidates gave the answer 'n + 3' or '3', which was from the term-to-term rule for the sequence. This showed a lack of understanding of the *n*th term for a sequence.

• Not checking answers

In part (c)(i), common errors were to give the answer 25 or 31, which are the number of lines for Diagrams 8 and 10 (rather than 9). It is likely that these candidates did not read the question carefully or check their answers.

• Inefficient method making it easier to make mistakes

In part (d), there were a number of candidates who found the correct answer by counting on from the sequence rather than using algebra. A correct answer using this method is awarded the marks, but this is a more time-consuming process than solving the equation and it is easier to make errors.

General advice

In order to do your best when answering a mathematics question, make sure you:

- revise all of the topics for the syllabus you are studying before the exam
- make sure you understand what all the key terms mean
- read the question carefully and make sure that you answer the question that is being asked
- leave time to look through the paper at the end to check that you have answered all questions
- show your working; this is particularly important for questions where you are asked to 'show that ...'
- set your working out clearly so that it is easy to follow, this makes it easier to keep track of what you have done and makes checking back through your work easier; try to write it in a logical order in the answer space
- write your working and answers clearly; if you want to change an answer then you should cross the answer out and write the replacement above, trying to change numbers on the answer line can lead to unclear figures
- check your working and answers to avoid errors

- give your answer to the appropriate level of accuracy; either the accuracy indicated in the question or the accuracy given on the front of the paper
- avoid rounding values part way through your calculation; round when you get the answer
- check that the answer that you have given is sensible and realistic for what is being asked
- use a pencil when drawing diagrams or completing graphs; this means that you can change your answer more easily if you have made a mistake
- take care when reading scales
- if you are asked for reasons for your answer then use the correct mathematical terms.

Section 6: Revision

It is important that you plan your revision in plenty of time for the examinations and that you develop a revision technique that works for you.

Planning your revision

A well-structured revision plan can give you the best chance of success in your examinations. As early as possible (at least six weeks before the examinations for each subject) identify the time you will spend revising and **schedule** slots for revision of this subject alongside your other subjects.

To create a revision schedule, you could use an overall planner for the weeks leading up to the examinations. You could then create weekly revision plans at the start of each week, which include the detail of which subjects you will revise and when. There are some example planners on the next page but there are lots of other ways you can do this. Planning takes time but will help you be more productive.

Use the following as a checklist to help you create your schedule.

Write down the dates and times of each of the examinations you are taking, in a calendar, diary or planner.

Work out how much time you have before each examination, so you can leave yourself plenty of time to revise each subject.

For each subject make sure you:

know how long each examination paper is

know what each examination paper is going to assess

work out how much time you can spend on each topic so that you revise all topics.

It is important to have breaks in order to stay alert and productive, so make sure you: include one rest day per week, or break this up into shorter rest breaks across a week include at least two hours of rest before bed time; working too late is unlikely to be productive take regular breaks during revision; revising for hours without a break will overload you have short revision sessions and short breaks between each session know ways to relax during your breaks; for example, physical exercise can be good during breaks.

It is important to be flexible and realistic, so make sure you:

include most days leading up to the exams **and** include any days or times when you are not able to revise (for example due to attending school, eating meals, participating in sports and hobbies) are honest with yourself about how much time you can really spend on each subject and topic don't get upset about plans that did not work – think of new plans that are easier to achieve.

It might help to:

include a mixture of subjects each day break up the material in your subjects into manageable chunks.

Plan to **return** to topics and **review** them; revisiting a topic means that you can check that you still remember the material and it should help you to recall more of the topic.

Include doing past paper examinations in your plan.

Revision planners

There are many different planners, calendars and timetables you could use to plan your revision. The ones provided in this section are just examples. They range from an overview of all the weeks leading up to the first examination, to the detail of what you will be revising each day.

Use colour-coding for different subjects, time off, examinations and so on. Plan which subjects you are going to revise in which slots. You could then add more detail such as topics to be covered. The planner can be as detailed and large and colourful as you like. Remember to tick off sections as you complete them and to review your plans if needed.

Overview planner

In the example below, the first examination is on 1 June. Here, the box has just been highlighted but you should write down the paper number, the subject and the time of the examination. You would do this for **all the examinations** you have. This helps you to visualise how much time you have before each examination. You can use this to block out whole or half days when you can't revise. You can also include as much or as little detail about your daily or weekly revision plan as you like.

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
17	18	19	20	21	22	23
24	25	26	27	28	29	30
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	1	2	3	4

Section 6: Revision

Weekly planner

This allows you to input greater detail about what you will revise each week. In the example below, each day is split into three.

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Morning							
Afternoon							
Evening							

In the example below, each day has been split into 1 hour slots so you can include even more detail.

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
08:00 - 09:00							
09:00 – 10:00							
10:00 – 11:00							
11:00 – 12:00							
12:00 – 13:00							
13:00 – 14:00							
14:00 – 15:00							
15:00 – 16:00							
16:00 – 17:00							
17:00 – 18:00							
18:00 – 19:00							
19:00 – 20:00							
20:00 – 21:00							

General revision advice

Here are some useful tips to help you with your revision. Use this as a checklist.

Make accurate notes during the course.

Look at the revision checklists in this guide and be really clear what topics you need to know.

Check that your notes are complete and make sense.

If you need to improve your notes, you could:

ask your teacher for help, especially if you don't understand some of your notes

ask a friend if you can copy missed work, but make sure you understand it

find more information on topics using your teacher, textbook, the library or the internet; your teacher will have a full copy of the syllabus

use different note-taking methods such as colour-coded notes, tables, spider-diagrams and mind maps; Venn diagrams can be very useful when you need to compare and contrast things

Make lots of new notes: they don't have to be neat, you can use scrap paper or a digital notepad; remember that the process of writing and reviewing your notes helps you to remember information.

Be organised: keep your notes, textbooks, exercise books and websites to hand.

Find a revision method that works for you; this might be working alone, with friends, with parents, online, at school, at home or a mixture of many different methods.

Have a clear revision plan, schedule or timetable for each subject you are studying.

Vary your revision activities: your revision programme should do more than remind you what you can and cannot do – it should help you to improve.

Use revision checklists to analyse how confident you feel in each topic.

Try doing some past examination papers; use the mark schemes to assess yourself.

Use plenty of pens, colours, paper and card of different sizes to make your notes more fun.

Test yourself in different ways, for example by:

playing 'Teach the topic' (see page 46)

using Question and Answer cards (see page 46)

answering real exam questions (see page 47)

Buy a good revision guide.

You might also find it helpful to:

Target single issues such as correcting those little things you always get wrong, or reminding yourself about any facts/issues/skills that you have never been too sure of.

Spend most of your time on specific skills, knowledge or issues that you have found more difficult when practising them, either during revision or earlier in the course during tests or mock exams.

Spend some time focussing on your strengths as well, so that you can improve.

Top tips for revision of Cambridge IGCSE Mathematics

1.Summarise, recall and apply

Make sure that you can **recall** and **apply** the key information and mathematical techniques on each topic that you need for the exam.

- i) Write a summary of the key information of a topic.
- ii) Collect together some questions that test the knowledge and skills of this topic. Ask your teacher for practice questions or suitable past examination questions, or use practice books or textbooks.
- iii) Test your recall by covering over the summary and trying to remember the details, or use the summary as part of the 'Teach the topic' (Tip 3) or 'Question and answer cards' (Tip 4) activities.
- iv) After you have spent some time revising and practising the knowledge and skills, answer the questions that you collected together on the topic. You might do this later on the same day as revising, or a few days later. Answer as many questions as you can in order to practise applying your knowledge.
- v) Try creating your own questions by adapting existing ones and use these for practice when you return to a topic.

2. Mind maps

Mind maps are a great way to revise the links between different factors or to explore a larger topic. They can also be used to brainstorm your ideas.

- i) Use a blank sheet of paper and turn it on its side (landscape).
- ii) Put the topic title in the middle of the page and build the mind map outwards using lines called 'branches'.
 - The first branches are from the central topic to sub-topics; draw these as thick lines.
 - Add new branches from the sub-topics to include more detail; draw these as thinner lines.
 - Add even more detail to a point by adding more branches.

This creates a hierarchy of information from 'overview' (the thick branches) to 'fine detail' (thinnest branches).

- iii) Write single key words or phrases along a branch and add drawings for visual impact.
- iv) Use different colours, highlighter pens, symbols and arrows to highlight key facts or issues.

It is a good idea to use a large piece of plain A3 (or larger) paper and lots of coloured pens.

3. Teach the topic

This is a very simple but effective technique that focuses on knowledge recall. It tests the brain and rehearses the information you need to know for a certain topic and so will help your revision.

- i) Create some topic cards with key bullet points of information on. Leave space for ticks.
- ii) Give these to your parents, family, friend or whoever you want.
- iii) Give yourself 10 minutes maximum to teach your audience the main points of the topic. You could use a mini-whiteboard or flipchart to help.
- iv) Your audience tick off all the points you mention in your presentation and give you a final score.

The brain loves competition, so if you do not score full marks, you can repeat and try again the next day, or compete against friends. This system of repeat and rehearsal is very effective, especially with more complex topics, and doesn't take much preparation.

4. Question and answer (Q & A) cards

This is very similar to 'Teach the topic' but less formal and less public for those who dislike performing in front of others. It tests knowledge recall and rehearses the information you need to know for a certain topic.

- i) Pick a topic and create two sets of cards: question cards and answer cards. You might find it helpful to make the question cards a different size or use different coloured card for answers.
- ii) Make sure you have the topic, or something appropriate depending on what you are focusing on, as a heading on each card. The questions should test your knowledge and understanding of key areas of the course.
- iii) A friend or family member uses the cards to test you in short 5 or 10 minute periods at any time during the day.
- iv) You could also do this alone by reading the questions to yourself, giving the answer and then checking the correct answer card.
- v) This game can be adapted by using the cards to find matching pairs: turn all cards face down across the space in front of you. Turn over two cards, leaving them where they are. If they match (one is a question card and the other is the corresponding answer card) pick up the pair and put them to one side. If they don't match, try to remember where they are and what is on each card, then turn them back over. Turn over two other cards. Continue until you have matched all pairs.

5. Question paper and mark schemes

Looking at past question papers and the mark scheme helps to familiarise yourself with what to expect and what the standard is.

- Ask your teacher for past paper questions with mark schemes for the course; ask your teacher for help to make sure you are answering the correct questions and to simplify the mark scheme.
- ii) Look at the revision checklist and identify which topic or unit a given question relates to; you might need to ask your teacher to help you do this.
- iii) Once you have finished revising a topic or unit, time yourself answering some appropriate exam questions. Check the mark schemes to see how well you would have scored or give the answers to your teacher to check.
- iv) Add details or notes to the mark scheme where you missed out on marks in your original answers using a different coloured pen. Use these notes when you revise and try the question again later.

You can find plenty of past exam papers and mark schemes on the Cambridge website www.cie.org.uk/programmes-and-qualifications/cambridge-igcse-mathematics-0580/past-papers/

Don't forget ...

... the advice given earlier in this Learner Guide about how to improve your learning approach, organisation skills and note-taking. Methods that you tried to help you learn during the course can also be applied to your revision.

For example, if you find the listening learning style useful, you could record yourself reading your revision notes out loud. You could read out particular topics that you find difficult, or specific information such as definitions, dates, facts or formulae. Play the recording back again and again. You can pause the recording and repeat certain parts, or try to guess what comes next. You could even make up songs, poems, phrases or rhymes and record these to help you remember.

Other useful revision advice for Cambridge IGCSE Mathematics

- Before the exam, make sure that you are familiar with your calculator, and confident in using it.
- Look at the Example Candidate Response on <u>page 27</u>. Can you identify the strengths of the response and where they have made mistakes or lost marks?

Section 6: Revision

- When you are attempting a past paper (or questions from a past paper), complete it without
 referring to your notes so that you get a true idea of your strengths and weaknesses. Then, go back
 through the paper using your notes and a different coloured pen to make corrections and changes.
 After you have done as much as you can on the paper, mark it using the mark scheme. Take notes
 of any points that you lost marks on.
- Don't just revise the topics that you enjoy and are confident in. If you identify an area that you are weaker in then try to revisit the topic by reviewing your notes and doing some practice questions, then use exam questions to check whether you now understand.
- Return to topics later in your revision to check that you still remember and understand the topic, and to help to ensure that you recall more of the material when you get to the examination.

Test yourself

Before you start your revision, answer the questions below to see how well you understand how you will be assessed. You can check your answers in *Section 7: Answers*.

Don't forget to save this file for your records.

1. What are the two levels that Cambridge IGCSE Mathematics (0580) can be taken at? (Tick the correct answer.)

Foundation and Higher Standard and Additional Core and Extended Common and Extra

- 2. Which papers will a candidate taking the Extended examinations take? (Tick all of the correct answers.)
 - Paper 1 Paper 2 Paper 3 Paper 4
- 3. What question types(s) are on each of the Cambridge IGCSE Mathematics (0580) papers? (Add the correct letter (A–D) to the table. You can type directly into the table if working electronically.) **The same letter can be used more than once**.

Paper	Question type
1	
2	
3	
4	

4. Which of these are the assessment objectives for Cambridge IGCSE Mathematics (0580)? (Tick **all** the correct answers.)

AO1 Mathematical techniques AO1 Problem questions AO2 Using a calculator AO3 Mental arithmetic AO2 Applying mathematical techniques to solve problems

- 5. If you are not told the accuracy to use in a question, and the answer is not exact, ...
 - (a) ... what accuracy should you give your answers to? (Tick the correct answer.)
 - nearest whole number 2 significant figures 3 significant figures 1 decimal place 2 decimal places 3 decimal places
 - (b) ... which of these numbers is the correct accuracy for degrees? (Tick the correct answer.)
 - 23° 23.1° 23.12°
- 6. Which of these is **not** one of the nine main topic areas that your paper is divided into? (Tick the correct answer.)
 - Co-ordinate geometry Algebra and graphs Calculus Number Statistics Probability
- 7. Even if the final answer in a calculation is wrong you can still score marks if you have shown your working. (Tick the correct answer.)

Т	rue	False

Use the appropriate revision checklist on the next pages to help guide your revision.

Revision checklists for Cambridge IGCSE Mathematics

The tables that follow provide an outline of the syllabus that can be used as a revision checklist. They don't contain all the detailed knowledge you need to know, just an overview. For more detail see the syllabus and talk to your teacher.

You can use the tick boxes in the checklists to show when you have revised a topic and are happy that you do not need to return to it. Tick the 'R', 'A', and 'G' column to record your progress. The 'R', 'A' and 'G' represent different levels of confidence, as follows:

- R = RED: means you are really unsure and lack confidence in a topic; you might want to focus your revision here and possibly talk to your teacher for help
- A = AMBER: means you are reasonably confident in a topic but need some extra practice
- G = GREEN: means you are very confident in a topic

As your revision progresses, you can concentrate on the **RED** and **AMBER** topics, in order to turn them into **GREEN** topics. You might find it helpful to highlight each topic in red, orange or green to help you prioritise.

You can use the 'Comments' column to:

- add more information about the details for each point
- include a reference to a useful resource
- add learning aids such as rhymes, poems or word play
- highlight areas of difficulty or things that you need to talk to your teacher about.

Click on the correct link to go directly to the appropriate checklist.

Core syllabus content

Extended syllabus content

Core syllabus content

Core: Number

Page 1 of 4

Sub-topic	You should be able to	R	Α	G	Comments
Number	Identify and use:				
	natural numbers				
	 integers (positive, negative and zero) 				
	prime numbers				
	 write a number as a product of its prime factors 				
	square numbers				
	 common factors and highest common factor (HCF) of two or more numbers 				
	 common multiples and lowest common multiple (LCM) of two or more numbers 				
	rational numbers				
	• irrational numbers (e.g. π , $\sqrt{2}$)				
	real numbers				
Squares,	Calculate:				
square roots,	squares of numbers				
cube roots	square roots of numbers				
	cubes of numbers				
	cube roots of numbers				
Directed numbers	Use directed numbers in practical situations, for example temperature changes, flood levels				
Fractions, decimals and	Use the language and notation of simple, vulgar and decimal fractions and percentages in appropriate contexts				
percentages	Recognise equivalent fractions, decimals and percentages				
	Convert between fractions, decimals and percentages				
Ordering	Order quantities by magnitude and demonstrate familiarity with the symbols =, \neq , >, <, \geq , \leq				

Section 6: Revision

Core: Number

Sub-topic	You should be able to	R	Α	G	Comments
Indices and standard form (links to <i>Algebraic</i> manipulation)	Understand the meaning and rules of indices, including evaluating indices such as 2^5 , 5^{-2} , 100^0 and working out calculations such as $2^{-3} \times 2^4$.				
mampalation	Use the rules of indices for: $a_1 = a_2 + a_3 + a_5$				
	• multiplication (addition of indices), e.g. 4 × 4				
	 division (subtraction of indices), e.g. 5' ÷ 5[°] 				
	 index numbers raised to an index, e.g. (4³)² 				
	Use the standard form $A \times 10^n$ where <i>n</i> is a positive or negative integer and $1 \le A < 10$				
	convert numbers into and out of standard form				
	calculate with numbers in standard form				
Four rules	Use the four rules for calculations with:				
(+ ÷)	whole numbers				
	decimals				
	vulgar and mixed fractions				
	 correct ordering of operations (BIDMAS / BODMAS) and use of brackets 				
Estimates	Make estimates of numbers, quantities and lengths				
	Give approximations to a specified number of:				
	significant figures				
	decimal places				
	Round off answers to reasonable accuracy in the context of a given problem				

Page 3 of 4

Core: Number

Convert from one currency to another

Sub-topic	You should be able to	R	Α	G	Comments
Bounds	Give upper and lower bounds for data given to a specified accuracy, e.g. measured lengths				
Ratio, proportion,	Understand ratio				
rate	Divide a quantity in a given ratio				
	Understand direct and inverse proportion				
	Use scales in practical situations				
	Use common measures of rate				
	Calculate average speed				
Percentages	Calculate a percentage of a quantity				
	Express one quantity as a percentage of another quantity				
	Calculate percentage increase or decrease				
Use of an electronic	Use a calculator efficiently				
calculator	Check accuracy of calculations				
Time	Calculate times in terms of the 24-hour and 12-hour clock				
	Read:				
	• clocks				
	• dials				
	• timetables				
Money	Calculate using money				

Section 6: Revision

Core: Number

Page 4 of 4

Sub-topic	You should be able to	R	Α	G	Comments
Personal and small business finance	Use given data to solve problems on personal and small business finance:				
	• earnings				
	simple interest				
	 compound interest (you do not need to know the compound interest formula) 				
	discount				
	profit and loss				
	Extract data from tables and charts				

Page 1 of 2

Core: Algebra and graphs

Sub-topic	You should be able to	R	Α	G	Comments
Basic algebra	Use letters to express generalised numbers				
	Express basic arithmetic processes algebraically				
	Substitute numbers in formulae				
	Construct simple expressions and set up simple equations				
	Transform simple formulae				
Algebraic manipulation	Manipulate directed numbers				
	Use brackets:				
	 expand a single bracket e.g. 3x(2x - 4y) 				
	• expand a pair of brackets e.g. $(x-4)(x-7)$				
	Extract common factors, e.g. factorise $9x^2 + 15xy$				
Rules of indices	Use and interpret positive, negative and zero indices				
	Use the rules of indices, e.g. to simplify algebra such as				
	• $3x^4 \times 5x$				
	$40x^3 + 0x^2$				
	• $10x^{\circ} \div 2x$				
	• $(X^0)^2$				
Equations and inequalities	Solve simple linear equations in one unknown				
	Solve simultaneous linear equations in two unknowns				

Core: Algebra and graphs

Page 2 of 2

Sub-topic	You should be able to	R	Α	G	Comments
Number sequences	Continue a number sequence				
(links to	Recognise patterns in sequences				
Squares, square roots, cubes and	Recognise relationships between difference sequences				
cubes and cube roots)	Find the <i>n</i> th term of sequences for:				
	linear sequences				
	simple quadratic sequences				
	cubic sequences				
Practical	Interpret and use graphs in practical situations including:				
graphs	travel graphs				
(links to Co-	conversion graphs				
ordinate geometry)	Draw graphs from given data				
Graphs of functions	Construct tables of values for functions of the form (where <i>a</i> and <i>b</i> are integer constants):				
(links to Co	• ax + b				
ordinate	• $\pm x^2 + ax + b$				
geometry)	• $\frac{a}{x}$ ($x \neq 0$)				
	Draw and interpret such graphs				
	Solve linear and quadratic equations approximately by graphical methods				

Page 1 of 2

Core: Geometry

Sub-topic	You should be able to	R	Α	G	Comments
Geometrical language	Use and interpret the geometrical terms: point line parallel perpendicular bearing right angle, acute, obtuse and reflex angles similar congruent Use and interpret the vocabulary of: triangles; right-angled, scalene, isosceles, equilateral quadrilaterals circles polygons simple solid figures including nets 				
Geometrical constructions	 Measure lines and angles Construct a triangle given the three sides, using a ruler and a pair of compasses only Construct other simple geometrical figures from given data using a ruler and a protractor Construct, using a straight edge and a pair of compasses only: angle bisectors perpendicular bisectors 				
Scale drawings	Read and make scale drawings				

Section 6: Revision

Core: Geometry

Sub-topic	You should be able to	R	Α	G	Comments
Similarity	Calculate lengths of similar figures				
Symmetry	Recognise symmetry properties for triangles, quadrilaterals and circles				
	Recognise line symmetry in two dimensions				
	Recognise and find the order of rotational symmetry in two dimensions				
Angle properties	Calculate unknown angles using the following geometrical properties (you must use the correct geometrical terminology when giving reasons for your answers):				
	angles at a point				
	 angles at a point on a straight line and intersecting straight lines 				
	angles within parallel lines				
	angle properties of triangles				
	angle properties of quadrilaterals				
	 angle properties of regular polygons 				
	angle in a semi-circle				
	 angle between tangent and radius of a circle 				
Loci	Use the following loci and the method of intersecting loci for sets of points in two dimensions which are:				
	 at a given distance from a straight line 				
	equidistant from two points				
	equidistant from two intersecting straight lines				
	equilaterant from the interested ing straight intes				

Page 2 of 2

Page 1 of 1

Core: Mensuration

Sub-topic	You should be able to	R	Α	G	Comments
Measures	Use current units of: • mass • length • area • volume • capacity In practical situations Express quantities in terms of smaller or larger units, including units of area and volume Convert between units, including units of area and volume				
Mensuration (links to Geometrical constructions)	 Carry out calculations involving: perimeter and area of a rectangle perimeter and area of a triangle perimeter and area of parallelogram perimeter and area of a trapezium perimeter and area of compound shapes made by combining rectangles, triangles, parallelograms and/or trapeziums 				
Circles	Do calculations involving circumference and area of a circle				
3D shapes	Carry out calculations involving:volume of a cuboid, prism and cylindersurface area of a cuboid and cylinder				
Combining 3D shapes	 Carry out calculations involving: area of a compound shape made by combining cuboids, prisms and/or cylinders volume of a compound shape made by combining cuboids, prisms and/or cylinders 				

60

co-ordinate geometry

Core: Co-ordinate geometry

Sub-topic	You should be able to	R	Α	G	Comments
Straight line graphs (links to <i>Practical</i> graphs)	Work with Cartesian co-ordinates in two dimensions				
Gradient	Find the gradient of a straight line when graph is given				
Equation of a straight line	Interpret and obtain the equation of a straight line graph in the form $y = mx + c$				
Equation of a parallel line	Determine the equation of a straight line parallel to a given line e.g. find the equation of a line parallel to $y = 4x - 1$ that passes through $(0, -3)$				

Core: Trigonometry

Sub-topic	You should be able to	R	Α	G	Comments
Bearings	Use and interpret three-figure bearings measured clockwise from the North, i.e. 000°–360°				
Trigonometry	 Find unknown sides and/or angles in right-angled triangles by applying: Pythagoras' theorem sine, cosine and tangent ratios for acute angles Give your answers in degrees to one decimal place when the answer is a decimal 				

Page 1 of 1

Page 1 of 1

Page 1 of 1

Core: Matrices and transformations

Sub-topic	You should be able to	R	Α	G	Comments
Vectors in two dimensions (links to <i>Trigonometry</i>)	Describe a translation by using a vector represented by, e.g. $\begin{pmatrix} x \\ y \end{pmatrix}$, \overrightarrow{AB} or a				
	Add and subtract vectors				
	Multiply a vector by a scalar				
Transformations	Reflect simple plane figures in horizontal or vertical lines				
	Rotate simple plane figures through multiples of 90° about:				
	the origin				
	their vertices				
	the midpoints of their sides				
	Construct translations of simple plane figures				
	Construct enlargements of simple plane figures (positive and fractional scale factors)				
	Recognise and describe				
	reflections				
	rotations				
	translations				
	enlargements (positive and fractional scale factors)				

Core: Probability

Page 1 of 1

Sub-topic	You should be able to	R	Α	G	Comments
Calculate probability (links to <i>Four rules</i>)	Calculate the probability of a single event as a fraction, decimal or percentage Solve problems involving probability by extracting and using information from tables or graphs				
Probability scale	Understand and use the probability scale from 0 to 1				
Event probability	Understand that the probability of an event occurring = $1 - $ the probability of the event not occurring				
Relative frequency	Understand relative frequency as an estimate of probability				

Page 1 of 1

Core: Statistics

Sub-topic	You should be able to	R	Α	G	Comments
Data collection	Collect, classify and tabulate statistical data				
	Read, interpret and draw simple inferences from tables and statistical diagrams				
Data analysis diagrams	 Construct and use bar charts pie charts pictograms simple frequency distributions histograms with equal intervals construct diagrams (with lines of heat fit) 				
Mean, median, mode and range	 Scatter diagrams (with lines of best ht) Calculate, for individual and discrete data mean median mode range and distinguish between the purpose for which they are used 				
Correlation	Understand what is meant by positive, negative and zero correlation with reference to a scatter diagram				
Line of best fit	Draw a straight line of best fit by eye				

Extended syllabus content (includes required Core content)

Extended: Number

Page 1 of 6

Sub-topic	You should be able to	R	Α	G	Comments
Number	Identify and use:				
	natural numbers				
	 integers (positive, negative and zero) 				
	prime numbers				
	write a number as a product of its prime factors				
	square numbers				
	 common factors and highest common factor (HCF) of two or more numbers 				
	 common multiples and lowest common multiple (LCM) of two or more numbers 				
	rational numbers				
	• irrational numbers (e.g. π , $\sqrt{2}$)				
	real numbers				
Set notation and language	Use language, notation and Venn diagrams to describe sets and represent relationships between sets.				
	Definition of sets, e.g. $A = \{x: x \text{ is a natural number}\}$				
	$B = \{(x,y): y = mx + c\}$				
	$C = \{x: a \leq x \leq b\}$				
	$D = \{a, b, c,\}$				

Page 2 of 6

Extended: Number

Sub-topic	You should be able to	R	Α	G	Comments
Set notation and language	Notation, e.g.				
(continued)	number of elements in set $A = n(A)$				
	'is an element of' E				
	'is not an element of' ∉				
	complement of set A A'				
	the empty set Ø				
	the universal set				
	A is a subset of B $A \subseteq B$				
	A is a proper subset of $B A \subset B$				
	A is not a subset of B $A \not\subseteq B$				
	A is not a proper subset of $B ext{ } A \not\subset B$				
	union of A and B $A \cup B$				
	intersection of A and B $A \cap B$				
Squares,	Calculate:				
square roots, cubes and	squares of numbers				
cube roots	square roots of numbers				
	cubes of numbers				
	cube roots of numbers				
Directed numbers	Use directed numbers in practical situations, for example temperature changes, flood levels				

66

Section 6: Revision

Extended: Number

Sub-topic	You should be able to	R	Α	G	Comments
Fractions, decimals and percentages	Use the language and notation of simple, vulgar and decimal fractions and percentages in appropriate contexts				
	Recognise equivalent fractions, decimals and percentages				
	Convert between fractions, decimals and percentages				
	Convert recurring decimals (e.g. 0.7) to fractions				
Ordering	Order quantities by magnitude and demonstrate familiarity with the symbols =, \neq , >, <, \geq , \leq				
Indices and standard form (links to <i>Algebraic</i>	Understand the meaning and rules of indices, including evaluating indices, e.g. 5^{-2} and doing calculations such as $2^{-3} \times 2^4$				
manipulation)	Understand the meaning and rules of fractional indices				
	Evaluate fractional indices (positive and negative)				
	Use the rules of indices for:				
	• multiplication (addition of indices), e.g. $4^3 \times 4^5$				
	• division (subtraction of indices), e.g. $5^7 \div 5^3$				
	 index numbers raised to an index, e.g. (4³)² 				
	Use the standard form $A \times 10^n$ where <i>n</i> is a positive or negative integer and $1 \le A < 10$				
	convert numbers into and out of standard form				
	 calculate with numbers in standard form 				

Page 3 of 6

Page 4 of 6

Extended: Number

Sub-topic	You should be able to	R	Α	G	Comments
Four rules (+ ÷)	 Use the four rules for calculations with: whole numbers decimals vulgar and mixed fractions correct ordering of operations (BIDMAS / BODMAS) and use of brackets 				
Estimates	 Make estimates of numbers, quantities and lengths Give approximations to a specified number of: significant figures decimal places Round off answers to reasonable accuracy in the context of a given problem 				
Bounds	Give upper and lower bounds for data given to a specified accuracy, e.g. measured lengthsObtain appropriate upper and lower bounds to solutions of simple problems given data to a specified accuracy, e.g. calculate the lower and upper bounds for the area and perimeter of a rectangle				

Extended: Number

Page 5 of 6

Sub-topic	You should be able to	R	Α	G	Comments
Ratio, proportion,	Understand ratio				
rate	Divide quantities in a given ratio				
(links to Direct and inverse	Increase and decrease a quantity by a given ratio				
proportion	Understand direct and inverse proportion				
	Use scales in practical situations				
	Use common measures of rate				
	Calculate average speed				
Percentages	Calculate a given percentage of a quantity				
	Express one quantity as a percentage of another quantity				
	Calculate percentage increase or decrease				
	Calculate reverse percentages, e.g. finding the cost price				
	given the selling price and the percentage profit				
Use of an electronic	Use a calculator efficiently				
calculator	Check accuracy of calculations				
Time	Calculate times in terms of the 24-hour and 12-hour clock				
	Read clocks, dials and timetables				
Money	Calculate using money				
	Convert from one currency to another				

Page 6 of 6

Extended: Number

Sub-topic	You should be able to	R	Α	G	Comments
Personal and small business finance	Use given data to solve problems on personal and small business finance such as:				
	• earnings				
	simple interest				
	compound interest				
	 you must know the compound interest formula: 				
	Value of investment = $P\left(1+\frac{r}{100}\right)^n$ where <i>P</i> is the				
	amount invested, <i>r</i> is the percentage rate of interest and <i>n</i> is the number of years of compound interest.				
	discount				
	profit and loss				
	Extract data from tables and charts				
Exponential growth and decay	Use exponential growth and decay in relation to population and finance, e.g. depreciation, bacteria growth				

Extended: Algebra and graphs

Sub-topic	You should be able to	R	Α	G	Comments
Basic algebra	Use letters to express generalised numbers				
	Express basic arithmetic processes algebraically				
	Substitute numbers in complicated formulae				
	Construct complicated formulae and equations				
	Transform complicated equations and formulae, e.g. formulae where the subject appears twice				
Algebraic manipulation	Manipulate directed numbers				
	Use brackets:				
	 expand a single bracket, e.g. 3x(2x – 4y) 				
	• expand a pair of brackets, e.g. $(x - 4)(x - 7)$				
	Extract common factors, e.g. factorise $9x^2 + 15xy$				
	Expand products of algebraic expressions				
	Factorise, where possible, expressions of the form:				
	• $ax + bx + kay + kby$				
	• $a^2x^2 - b^2y^2$				
	• $a^2 + 2ab + b^2$				
	• $ax^2 + bx + c$				

Page 2 of 5

Extended: Algebra and graphs

Sub-topic	You should be able to	R	Α	G	Comments
Algebraic fractions	Manipulate algebraic fractions, e.g. • $\frac{x}{3} + \frac{x-4}{2}$ • $\frac{2x}{3} - \frac{3(x-5)}{2}$ • $\frac{3a}{4} \times \frac{5ab}{3}$ • $\frac{3a}{4} \div \frac{9a}{10}$ • $\frac{1}{x-2} + \frac{2}{x-3}$ Factorise and simplify rational expressions (algebraic fractions) such as $\frac{x^2-2x}{x^2-5x+6}$				
Rules of indices	Use and interpret positive, negative and zero indices Use and interpret fractional indices, e.g. solve $32^x = 2$ Use the rules of indices, e.g. to simplify: • $3x^4 \times \frac{2}{3}x^{\frac{1}{2}}$ • $\frac{2}{5}x^{\frac{1}{2}} \div 2x^{-2}$ • $\left(\frac{2x^5}{3}\right)^3$				

Extended: Algebra and graphs

Page 3 of 5

Sub-topic	You should be able to	R	Α	G	Comments
Equations and inequalities	Solve simple linear equations in one unknown				
	Solve simultaneous linear equations in two unknowns				
	Solve quadratic equations by:				
	factorisation				
	completing the square				
	 using the quadratic formula 				
	Solve simple linear inequalities				
Linear programming	Represent inequalities graphically, including using the conventions of				
	broken lines for strict inequalities				
	 shading unwanted regions 				
	Solve simple linear programming problems using graphical representations of inequalities				
Page 4 of 5

Extended: Algebra and graphs

Sub-topic	You should be able to	R	Α	G	Comments
Number sequences	Continue a number sequence				
(links to Squares,	Recognise patterns in sequences				
square roots, cubes and	Recognise relationships between difference sequences				
cube roots)	Find the <i>n</i> th term of sequences for:				
	linear sequences				
	quadratic sequences				
	cubic sequences				
	exponential sequences				
	Find the <i>n</i> th term of for sequences that are a simple combination of the sequences listed above				
Direct and	Express direct proportion algebraically				
inverse proportion (links to <i>Ratio,</i>	Express inverse proportion algebraically				
proportion, rate)	Use algebraic expressions of direct and inverse proportion to find unknown quantities				
Practical	Interpret and use graphs in practical situations including:				
graphs (links to Co-	travel graphs				
ordinate	conversion graphs				
geometry)	Draw graphs from given data				

Extended: Algebra and graphs

Page 5 of 5

Sub-topic	You should be able to	R	Α	G	Comments
Practical	Apply the idea of rate of change to:				
graphs (links to Co-	distance-time graphs				
ordinate	 speed–time graphs 				
geometry) continued	acceleration and deceleration				
	Calculate distance travelled as an area under a linear speed- time graph				
Graphs of functions	Construct tables of values and draw graphs for functions of the form:				
(links to Co-	• ax^n where <i>a</i> is a rational constant and $n = -2, -1, 0, 1,$				
ordinate geometry)	 2, 3 and simple sums of not more than three of these <i>a^x</i> where <i>a</i> is <i>a</i> positive integer 				
	Solve associated equations approximately by graphical methods				
	Draw and interpret graphs representing exponential growth and decay problems				
Gradients of curves	Estimate gradients of curves by drawing tangents				
Function	Use function notation, e.g.				
notation	$f(x) = 3x - 5$, $f: x \mapsto 3x - 5$ to describe simple functions				
	Find inverse functions $f^{-1}(x)$				
	Form composite functions as defined by $gf(x) = g(f(x))$				

Page 1 of 3

Extended: Geometry

Sub-topic	You should be able to	R	Α	G	Comments
Geometrical	Use and interpret the geometrical terms:				
language	point				
	• line				
	• parallel				
	• perpendicular				
	bearing				
	 right angle, acute, obtuse and reflex angles 				
	• similar				
	congruent				
	Use and interpret the vocabulary of:				
	 triangles – right-angled, scalene, isosceles, equilateral 				
	quadrilaterals				
	circles				
	polygons				
	simple solid figures including nets				
Geometrical constructions	Measure lines and angles				
	Construct a triangle given three sides using a ruler and a pair of				
	compasses only				
	Construct other simple geometrical figures from given data				
	using a ruler and protractor				
	Construct, using a straight edge and a pair of compasses only:				
	 angle bisectors 				
	perpendicular bisectors				

Extended: Geometry

Sub-topic	You should be able to	R	Α	G	Comments
Scale drawings	Read and make scale drawings				
Similarity	Calculate lengths of similar figures				
	Use relationships between areas of similar triangles and in similar figures				
	Use relationships between volumes and surface areas of similar solids				
Symmetry	Recognise symmetry properties for triangles, quadrilaterals and circles				
	Recognise line symmetry in two dimensions				
	Recognise and find the order of rotational symmetry in two dimensions				
	Use the following symmetry properties of circles:				
	equal chords are equidistant from the centre				
	 perpendicular bisector of a chord passes through the centre 				
	 tangents from an external point are equal in length 				
	Recognise and use symmetry properties of:				
	• prism				
	 including the cylinder 				
	• pyramid				
	 including the cone 				

Page 3 of 3

Extended: Geometry

Sub-topic	You should be able to	R	Α	G	Comments
Angle properties	Calculate unknown angles using the following geometrical properties (you must use the correct geometrical terminology when giving reasons for your answers):				
	angles at a point				
	 angles at a point on a straight line and intersecting straight lines 				
	 angles formed within parallel lines 				
	 angle properties of triangles and quadrilaterals 				
	 angle properties of regular polygons 				
	angle in a semi-circle				
	 angle between tangent and radius of a circle 				
	 angles properties of irregular polygons 				
	 angle at the centre of a circle is twice the angle at the circumference 				
	 angles in the same segment are equal 				
	 angles in opposite segments are supplementary 				
	angles in cyclic quadrilaterals				
Loci	Use the following loci and the method of intersecting loci for sets of points in two dimensions which are:				
	at a given distance from a point				
	 at a given distance from a straight line 				
	equidistant from two points				
	 equidistant from two intersecting straight lines 				

Extended: Mensuration

Sub-topic	You should be able to	R	Α	G	Comments
Measures	Use current units of:				
	• mass				
	length				
	• area				
	• volume				
	capacity				
	In practical situations				
	Express quantities in terms of smaller or larger units, including units of area and volume				
	Convert between units, including units of area and volume				
Mensuration	Carry out calculations involving:				
(links to Geometrical	perimeter and area of a rectangle				
constructions)	perimeter and area of a triangle				
	perimeter and area of parallelogram				
	perimeter and area of a trapezium				
	 perimeter and area of compound shapes made by combining rectangles, triangles, parallelograms and/or trapeziums 				
Circles	Carry out calculations involving circumference and area of a circle				
	Solve problems involving arc length and sector area of a circle as fractions of the circumference and area of a circle				

Page 2 of 2

Extended: Mensuration

Sub-topic	You should be able to	R	Α	G	Comments
3D shapes	Carry out calculations involving:				
	 volume of a cuboid, prism and cylinder 				
	surface area of a cuboid and cylinder				
	Carry out calculations involving:				
	surface area and volume of a sphere				
	 surface area and volume of a pyramid 				
	surface area and volume of a cone				
	(Formulae will be given for the surface area and volume of the sphere, pyramid and cone)				
Combining 3D	Carry out calculations involving:				
shapes	 area of a compound shape made by combining cuboids, prisms and/or cylinders 	oids,			
	 volume of a compound shape made by combining cuboids, prisms and/or cylinders 				

Extended: Co-ordinate geometry

Page 1 of 1

Sub-topic	You should be able to	R	Α	G	Comments
Co-ordinates (links to <i>Practical</i> graphs)	Work with Cartesian co-ordinates in two dimensions				
Straight lines	Find the gradient of a straight line graph Calculate the gradient of a straight line from the co-ordinates of two points on it				
Length and midpoint	Calculate the length and the co-ordinates of the midpoint of a straight line from the co-ordinates of its end points				
Equation of a straight line	Interpret and obtain the equation of a straight line graph in the form $y = mx + c$				
Equation of a parallel line	Determine the equation of a straight line parallel to a given line, e.g. find the equation of a line parallel to $y = 4x - 1$ that passes through $(0, -3)$				
Gradients of related lines	 Find the gradient of parallel and perpendicular lines, e.g. find the gradient of a line perpendicular to y = 3x + 1 find the equation of a line perpendicular to one passing through the co-ordinates (1, 3) and (-2, -9). 				

Page 1 of 1

Extended: Trigonometry

Sub-topic	You should be able to	R	Α	G	Comments
Bearings	Use and interpret three-figure bearings measured clockwise from the North, i.e. 000°–360°				
Trigonometry	Find unknown sides and/or angles in right-angled triangles by applying:				
	Pythagoras' theorem				
	• sine, cosine and tangent ratios for acute angles				
	Solve trigonometric problems in two dimensions involving angles of elevation and depression				
	Extend sine and cosine values to angles between 90° and 180°				
	Give your answers in degrees to one decimal place when the answer is a decimal				
Trigonometric formulae	Solve problems using the sine and cosine rules for any triangle				
	Find the area of any triangle using				
	Area of a triangle $=\frac{1}{2}ab\sin C$				
Application to 3D	Solve simple trigonometric problems in three dimensions including angle between a line and a plane				

Extended: Matrices and transformations

Page 1 of 3

Sub-topic	You should be able to	R	Α	G	Comments
Vectors in two dimensions (links to <i>Trigonometry</i>)	Describe a translation by using a vector represented by, e.g. $\begin{pmatrix} x \\ y \end{pmatrix}$, \overrightarrow{AB} or a				
	Add and subtract vectors				
	Multiply a vector by a scalar				
Transformations	Reflect simple plane figures				
	Rotate simple plane figures through multiples of 90° about:				
	the origin				
	their vertices				
	the midpoints of their sides				
	Construct translations of simple plane figures				
	Construct enlargements of simple plane figures (positive, fractional and negative scale factors)				
	Recognise and describe:				
	reflections				
	rotations				
	translations				
	 enlargements (positive, fractional and negative scale factors) 				

Page 2 of 3

Extended: Matrices and transformations

Sub-topic	You should be able to	R	Α	G	Comments
Combining vectors	Calculate the magnitude of a vector $\begin{pmatrix} x \\ y \end{pmatrix}$ as $\sqrt{x^2 + y^2}$ (using				
	Pythagoras' theorem)				
	Understand that magnitude is denoted by modulus signs, e.g. $ \overrightarrow{AB} $ or $ \mathbf{a} $				
	Represent vectors by directed line segments				
	Use the sum and difference of two vectors to express given vectors in terms of two coplanar vectors				
	Use position vectors				
	In your answers, remember to indicate a vector in some definite way, e.g. with an arrow (\overrightarrow{AB}) , or underling (<u>a</u>)				
Matrices	Display information in a matrix of any order				
	Calculate the sum and product (where possible) of two matrices				
	Multiply a matrix by a scalar quantity and calculate the product				
	Use the algebra of 2×2 matrices including the:				
	 zero matrix identity matrix				
	Calculate the:				
	 determinant, A , of a matrix inverse, A⁻¹ of a non-singular matrix 				

Section 6: Revision

Extended: Matrices and transformations

Page 3 of 3

Sub-topic	You should be able to	R	Α	G	Comments
Transformation	Use the following transformations of the plane:				
matrices,	reflection (M)				
Continued	rotation (R)				
	translation (T)				
	enlargement (E)				
	 combinations of the above transformations 				
	Understand in combinations of transformations, that if $M(a) = b$ and $R(b) = c$, then $RM(a) = c$ (i.e., $MR(a)$ means apply R then M)				
	Identify and give precise descriptions of transformations connecting given figures				
	Describe transformations using:				
	co-ordinates				
	matrices (not singular matrices)				

Page 1 of 1

Extended: Probability

Sub-topic	You should be able to	R	Α	G	Comments
Probability (links to <i>Four rules</i>)	Calculate the probability of a single event as a fraction, decimal or percentage				
	Solve problems involving probability by extracting and using information from tables or graphs				
Probability scale	Understand and use the probability scale from 0 to 1				
Event probability	Understand that the probability of an event occurring = 1 – the probability of the event not occurring				
Relative frequency	Understand relative frequency as an estimate of probability				
Combined events	Calculate the probability of simple combined events using:possibility diagramstree diagrams				

Section 6: Revision

Extended: Statistics

Sub-topic	You should be able to	R	Α	G	Comments
Data collection	Collect, classify and tabulate statistical data				
	Read, interpret and draw simple inferences from tables and statistical diagrams				
Data analysis	Construct and use				
diagrams	bar charts				
	pie charts				
	• pictograms				
	simple frequency distributions				
	histograms with equal intervals				
	histograms with unequal intervals (areas are proportional to				
	frequencies and vertical axis is frequency density)				
	 scatter diagrams (with lines of best fit) 				
Mean, median,	Calculate, for individual and discrete data				
mode and range	• mean				
rango	• median				
	• mode				
	• range				
	and distinguish between the purposes for which they are used				
Grouped and continuous data	Calculate an estimate of the mean for grouped and continuous data				
	Identify the modal class from a grouped frequency distribution				

Page 2 of 2

Extended: Statistics

Sub-topic	You should be able to	R	Α	G	Comments
Frequency diagrams	Construct and use cumulative frequency diagrams				
	Estimate and interpret from a cumulative frequency diagram:				
	the median				
	percentiles				
	quartiles				
	inter-quartile range				
Correlation	Understand what is meant by positive, negative and zero correlation with reference to a scatter diagram				
Line of best fit	Draw a straight line of best fit by eye				

Section 7: Answers

Section 3: How you will be assessed

Where appropriate, answers are in **bold**.

2. Papers 1 and 3

Learners taking the **Extended** course need to know all of the Core course content as well as some **extra** content. This extra content requires learners to explore topics and sub-topics of the Core syllabus in more detail, to cover some more complex techniques, and to learn new sub-topics.

4.

Component	How long	How many marks			
Paper 3	2 hours	104 marks			
Paper 2	1 hour 30 minutes	70 marks			
Paper 4	2 hours 30 minutes	130 marks			
Paper 1	1 hour	56 marks			

5. True

You can use an electronic calculator in all papers. You are **not** allowed algebraic or graphical calculators. **Ask your teacher to recommend a calculator.**

Section 5: Example candidate response

Core (Paper 3)	Extended (Paper 4)
1. all	1. all
2. 2 hours	2. 2 hours 30 min
3. False	3. False
4. Three significant figures	4. Three significant figures

In Paper 3 (Core) and Paper 4 (Extended) you need to answer **all** questions. You are allowed to use an electronic calculator. If a question does not give you a degree of accuracy and the answer is not exact, then round your answer to three significant figures as per the instructions on the front of the paper (unless you are told to give the exact answer).

Section 6: Revision

If you are unsure about the difference between short-answer questions and structured questions it would be useful for you to look at an example of Paper 1 or 2 and an example of Paper 3 or 4 so you can see the difference. Or talk to your teacher.

4. AO1 Mathematical techniques

AO2 Applying mathematical techniques to solve problems

There are two assessment objectives for Cambridge IGCSE Mathematics (0580):

AO1 Mathematical techniques: this is all about demonstrating that you have knowledge of mathematical techniques

AO2 Applying mathematical techniques to solve problems: this is all about how you use mathematics to solve problems.

See pages 25-26 for more detail.

Section 7: Answers

Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom t: +44 1223 553554 f: +44 1223 553558 e: info@cie.org.uk www.cie.org.uk

IGCSE is the registered trademark of Cambridge International Examinations.
 Cambridge International Examinations 2016
 Version 1

